Power Mosfet Bidirectional Switchfasrweek

Posted : admin On 12.09.2021

by Lewis Loflin

We report the 250 °C operation of a diamond-based monolithic bidirectional switch. A normally-ON double gate deep depletion MOSFET was fabricated with a 400 nm p-type channel with a boron doping of N A-N D = 2.3 × 10 17 cm −3 and an Al 2 O 3 gate oxide thickness of 50 nm. The MosFet can be protected by other means. If they are from separate power sources and it is unwise to connect the power supply grounds together then an optoisolator is the ideal solution. The next question is what PWM frequency do you plan. If it is relative low then a simple resistor from the Mosfet gate to the Arduino will protect the Arduino.

Webmaster Homepage and contact information.
Hobby Electronics Homepage.

Update Dec. 2019. Many micro-controllers today are using 3.3-volt Vcc. This is also true of Raspberry Pi. I found two MOSFETs that work at 3.3-volts.

The IRFZ44N is an N-channel device rated at 55V and RDS(on) resistance of 0.032 Ohms max. The other is a P-channel device rated at 55V and a RDS(on) of 0.02 Ohms max.

See the following spec sheets:

Also see Test Power MOSFET Transistors, Results, Observations

Here we will learn how power n-channel power MOSFETs operate. In this example I'm using enhancement mode devices. To use depletion mode MOSFETS simply reverse the circuits where an N-channel depletion mode MOSFET will use a variation of the P-channel enhancement mode circuit.

In plate 1 we have the symbols for depletion mode and enhancement mode MOSFETs - notice the dashed versus solid lines. In a depletion mode MOSFET gate voltage closes off the conductive channel from source (S) to drain (D). With an enhancement mode MOSFETs gate voltage opens the conductive channel from source to drain.

In the above examples we are switching a LED on/off using power MOSFETs. In the case of the N-channel such as the IRF630 when the gate (G) is greater than 5-volts the LED cuts on. The resistor on the gate of the N-channel MOSFET is used to bleed-off the electric charge from the gate and turn off the MOSFET. The resistor can be 5K-10K.

Plate 4

The voltage difference between the gate and source will turn on the MOSFET, but must not exceed a value in the spec sheet known as Vgs. To do so will damage the device. In the case of IRF630 and IRF9630 MOSFETs that value is 20-volts.

Note the internal parasitic suppression diodes are for use with magnetic loads. Not all power MOSFETs have those so check the specifications sheets. These particular transistors are optimized for switching and not for use in audio amplifiers.

The largest use of these circuits is H-bridge motor controls. They are used in conjunction with N-channel MOSFET switches.

Note that Rg (or Rgs) is used to bleed the charges off the MOSFET gates or else they may not turn off.

  • Related:
  • Why Your MOSFET Transistors Get Hot YouTube
  • Issues on Connecting MOSFETs in Parallel YouTube
  • Simple Circuits for Testing MOSFET Transistors YouTube
  • New Nov. 2014
  • Using the ULN2003A Transistor Array with Arduino YouTube
  • Using the TIP120 & TIP120 Darlington Transistors with Arduino YouTube
  • Using Power MOSFETS with Arduino YouTube
  • Using PNP Bipolar Transistors with Arduino, PIC YouTube
  • Using NPN Biploar Transistors with Arduino, PIC YouTube
  • How to build a Transistor H-Bridge for Arduino, PIC YouTube
  • Build a Power MOSFET H-Bridge for Arduino, PIC YouTube

Basic MOSFET Selection Rules / Checks

The Drain to Source max voltage rating (max Vds) determines the maximum voltage you can switch.

The Gate threshold voltage determines the voltage difference you need to apply to the gate to make the mosfet conduct.

The Gate to Source max voltage (max Vgs) is a critical factor that must not be exceeded (even for a few nS) or the MOSFET can be destroyed. Will the power rails spike? If so provide protection of some sort (e.g. transient suppressor) or select a device with a higher rating. When switching high voltage rails (e.g. 24V from low voltage logic you can often meet this requirement using a potential divider to provide the mosfet with a gate voltage above 0V.

Do you need to use a mosfet driver IC? If the mosfet has a high Gate switching current (e.g. high current MOSFETs) or will be switched fast (to ensure that the mosfet operates efficiently with minimal power dissipation) then this may be necessary.

Check the ‘Why MOSFETs Fail’ notes below

General Notes

Enhanced MOSFETs when on allow current in either direction with an essentially identical RDSON. When off they block current in one direction.

Because of their high input impedance MOSFET’s are vulnerable to damage by electrostatic discharges. Sometimes they have integral protection diodes or zeners.

Enhancement mode mosfets incorporate a diode between the source and drain pins.
A double enhanced mosfet incorporates two diodes cathode to cathode.

A MOSFET only requires gate current during the switching edge, to charge the GS capacitance. This gate current can be high.

To Switch 0V

Use a N-Channel MOSFET with Source connected to 0V (either directly or via a current limiting resistor) and the load connected to Drain.

Whenever the Gate voltage exceeds the Source voltage by at least the Gate Threshold Voltage the MOSFET conducts. The higher the voltage, the more the Mosfet can conduct.

N channel mosfets have lower on resistances than P channel mosfets so are preferable if you have the choice of which side to switch.

N-Channel MOSFETs can also switch +V in certain configurations, with Drain being Vin and Source being switched Vout.

To Switch +V With A P-Channel MOSFET

Use a P-Channel MOSFET with Source connected to +V (either directly or via a current limiting resistor) and the load connected to Drain. Section ageography.

Usually the Source pin must be more positive than the Drain (however this isn’t true when using a P Mosfet to provide reverse polarity protection for instance).

Whenever the Gate voltage is lower than the (Source Voltage – Gate Threshold voltage) the MOSFET conducts. If the gate voltage is higher than this it does not conduct. The greater the voltage difference from the Source the more the MOSFET can conduct.

P channel mosfets have higher on resistances than N channel mosfets so are often less preferable.

The P-channel MOSFET has an advantage over the N-channel MOSFET for some applications due to the simplicity of the on/off control. A N-channel mosfet switching +V requires an additional voltage rail for the gate; the P-channel does not.

To Switch +V With A N-Channel MOSFET

Use a N-Channel MOSFET with Drain connected to +V and the load connected to Source.

There’s a catch with this arrangement though – the mosfet switches on based on the Vgs threshold being reached and the source voltage in this arrangement changes between off (0V) and on (Vin). This means you can’t switch the gate to Vin, you need a different voltage rail that is higher than Vin by at least the mosfets Vgs threshold, and also not exceeding the maximum Vgs specification.

Gate Resistor

Using a low value resistor between the MOSFET driver and the MOSFET gate terminal dampens down any ringing oscillations caused by the lead inductance and gate capacitance which can otherwise exceed the maximum voltage allowed on the gate terminal. It also slows down the rate at which the MOSFET turns on and off. This can be useful if the intrinsic diodes in the MOSFET do not turn on fast enough.

If you are driving a MOSFET from a bouncy, possibly noisy, line (for instance relay contacts), you should use a small series gate resistor close to the MOSFET, to suppress VHF oscillation. 22 ohms is plenty, you can use less.

If speed / propagation delay is critical you may need to try and avoid using a gate resistor or keep its value low. For instance with a 5V signal and a FDN335N, a 1K gate resistor can add around 200-400nS propagation delay (delayed switching from gate to drain).

For high current MOSFETs the Gate Channel Capacitance can be very high and a rapidly changing drain voltage can produce milliamps of transient Gate current. This could be enough to overdrive and even damage delicate CMOS driver chips. Having a series resistor is a compromise between speed and protection, with values of 100R to 10K being typical. Even without inductive loads there is dynamic gate current. Also, MOSFETs are extremely susceptible to damage caused by electrostatic discharge and can be damaged irreversibly by a single instance of Gate breakdown. For this reason it is a very good idea to use gate series resistors of 1K to 10K. This is especially important if the Gate signal comes from another circuit board.

If a MOSFET could be left floating then use a pull down resistor (100K to 1M is generally ok) from Gate to Source.

Gate Driver IC’s

Driver IC’s are often used for high current MOSFETs and when using fast switching rates due to the MOSFET needing brief but high currents to change state. A drivers inputs are typically logic level. Often MOSFETs require a 1 – 2A drive to achieve switching efficiently at frequencies of hundreds of kilohertz. This drive is required on a pulsed basis to quickly charge and discharge the MOSFET gate capacitances.

Paralleling MOSFETs

MOSFETs may be placed in parallel to improve the current handling capability. Simply join the Gate, Source and Drain terminals together. Any number of MOSFETs can be paralleled up, but note that the gate capacitance adds up as you parallel more MOSFETs, and eventually the MOSFET driver will not be able to drive them.

Using N Channel Mosfets To Switch Positive Voltages

Yes you can! As long as Vgs spec is met a N channel will typically turn on and allow current to flow from Source to Drain (Source more positive than Drain). The body diode will let the current flow anyway, but turning the mosfet on allows it to flow fully.

Using The Body Diode

You can use the body diode to allow current to pass through a mosfet but you do need to be careful and know what you are doing to ensure the mosfet isn’t damaged by doing it.

Mosfet True Switch / Bi-Directional Switch With P-Channel MOSFETs

Using this back to back arrangement of P Channel mosfets, when on current will flow in either direction. When off both sides are isolated. You can use any typical P channel mosfet.

The transistor switch is needed because the gates need to be switched by an open drain output to avoid there being a large enough Vgs from the on off signal in relation to the power rails connected to the Drains being switched . The transistor could be lost of an open drain IC which can tolerate the Drain voltages when off is used to provide the signal.

Note that this arrangement is only suitable if the voltage being switched is > Vgs switching threshold of the mosfet used.

Where this can’t be guaranteed or where opto isolation is needed, photo mosfet solid state relays are a great solution. Examples:

Avago ASSR-1218 – 200mA, 60V rated. Will hapily switch low voltages like +3V3 without any voltage drop other than caused by its on state resistance (i.e. without the voltage drop of using a transistor output opto isolator).

Mosfet True Switch / Bi-Directional Switch With N-Channel MOSFETs

​An example:

Why MOSFETs Fail

Insufficient gate drive

MOSFET devices are only capable of switching large amounts of power because they are designed to dissipate minimal power when they are turned on. You must ensure that the MOSFET is turned hard on to minimise dissipation during conduction. If the device is not fully turned on then the device will have a high resistance during conduction and will dissipate considerable power as heat.

Over Voltage

Exceed a MOSFETs voltage rating for just a few nS and you can destroy it. Select MOSFET devices conservatively for the anticipated voltage levels and ensure you allow for or deal with suppressing any voltage spikes or ringing.

Peak current overload

Overload currents for a short duration can cause progressive damage to a MOSFET often with little noticeable temperature rise prior to failure. MOSFETS often quote high peak current rating but these are typically only for peak currents of a few 100 uS. If switching inductive load ensure you overrate the MOSFET to handle peak currents.

Prolonged current overload

If a MOSFET is passing a high current then its on state resistance will cause it to heat up. If the heatsinking is poor then the MOSFET can be destroyed by excessive temperature. A solution to this can be to parallel multiple MOSFETs to share high load currents between them.

H or Full Bridge Configuration Shoot-through / Cross conduction

When using P and N MOSFETS between voltage rails to provide a H or L output voltage, if the control signals to the MOSFETs overlap then they will effectively short circuit the supply and this is known as a shoot-through condition. When it occurs any supply decoupling capacitors are discharged rapidly through both devices every time a switching transition occurs and resulting in very short but large current pulses.

To avoid this you must allowing a dead time between switching transitions, during which neither MOSFET is turned on.

No free-wheel current path

When switching inductive loads there must be a path for back EMF to free-wheel when the MOSFET switches off. Enhancement mode MOSFETs incorporate a diode that provides this protection.

Slow reverse recovery of MOSFET body diode

High Q resonant circuits are capable of storing considerable energy in their inductance and self capacitance. Under certain tuning conditions, this causes the current to “free-wheel” through the internal body diodes of the MOSFET devices as one MOSFET turns off and the other device turns on. A problem arises due to the slow turn-off (or reverse recovery) of the internal body diode when the opposing MOSFET tries to turn on. MOSFET body diodes generally have a long reverse recovery time compared to the performance of the MOSFET itself. If the body diode of one MOSFET is conducting when the opposing device is switched on, then a “short circuit” occurs similar to the shoot-through condition described above. You can solve his problem by adding a Schottky diode connected in series with the MOSFET source (prevents the MOSFET body diode from ever being forward biased by the free-wheeling current) and a high speed (fast recovery) diode connected in parallel to the MOSFET/Schottky pair so that the free-wheeling current bypasses the MOSFET and Schottky completely. This ensures that the MOSFET body diode is never driven into conduction. The free-wheel current is handled by the fast recovery diodes which present less of a shoot through problem.

Excessive gate drive

If the MOSFET gate is driven with too high a voltage the gate oxide insulation can be punctured effectively destroying the MOSFET. Ensure that the gate drive signal is free from any narrow voltage spikes that could exceed the maximum allowable gate voltage.

Slow switching transitions

Little energy is dissipated during the steady on and off states, but considerable energy is dissipated during the times of a transition. Therefore it is desirable to switch between states as quickly as possible to minimise power dissipation during switching. Since the MOSFET gate appears capacitive, it requires considerable current pulses in order to charge and discharge the gate in a few tens of nano-seconds. Peak gate currents can be as high as an amp.

Spurious oscillation

MOSFET inputs are relatively high impedance, which can lead to stability problems. Under certain conditions high voltage MOSFET devices can oscillate at very high frequencies due to stray inductance and capacitance in the surrounding circuit. (Frequencies usually in the low MHz.) A low impedance gate-drive circuit should also be used to prevent stray signals from coupling to the gate of the device.

Conducted interference with controller

Rapid switching of large currents can cause voltage dips and transient spikes on the power supply rails which may interference with the control circuitry. Good decoupling and star-point grounding techniques should be used.

Static electricity damage

MOSFETs are very sensitive to static. Antistatic handling precautions should be used to prevent gate oxide damage.

Power Mosfet Bidirectional Switch Fast Week 2

Power mosfet bidirectional switch fast week 6

Other Mosfet Resources

High Side Mosfet Switch

We benefit hugely from resources on the web so we decided we should try and give back some of our knowledge and resources to the community by opening up many of our company’s internal notes and libraries through mini sites like this. We hope you find the site helpful.
Please feel free to comment if you can add help to this page or point out issues and solutions you have found, but please note that we do not provide support on this site. If you need help with a problem please use one of the many online forums.